메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Mohammad Rezaiee-Pajand (Ferdowsi University of Mashhad) Emad Sobhani (Ferdowsi University of Mashhad) Amir R. Masoodi (Ferdowsi University of Mashhad)
저널정보
국제구조공학회 Steel and Composite Structures, An International Journal Steel and Composite Structures, An International Journal Vol.43 No.5
발행연도
2022.6
수록면
603 - 623 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This article is dedicated to predict the natural frequencies of joined conical shell structures made of Functionally Graded Material (FGM). The structure includes two conical segments. The equivalent material properties are found by using the rule of mixture based on Voigt model. In addition, three well-known patterns are employed for distribution of material properties throughout the thickness of the structure. The main objective of the present research is to propose a novel exponential pattern and obtain the related equivalent material properties. Furthermore, the Donnell type shell theory is used to obtain the governing equations of motion. Note that these equations are obtained by employing First-order Shear Deformation Theory (FSDT). In order to discretize the governing system of differential equations, well-known and efficient semi-analytical scheme, namely Generalized Differential Quadrature Method (GDQM), is utilized. Different boundary conditions are considered for various types of single and joined conical shell structures. Moreover, an applicable modification is considered for the continuity conditions at intersection position. In the first step, the proposed formulation is verified by solving some well-known benchmark problems. Besides, some new numerical examples are analyzed to show the accuracy and high capability of the suggested technique. Additionally, several geometric and material parameters are studied numerically.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0