메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
L. Mercatali (Institute for Neutron Physics and Reactor Technology) N. Beydogan (NInstitute for Neutron Physics and Reactor Technology) V.H. Sanchez-Espinoza (Institute for Neutron Physics and Reactor Technology)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제53권 제9호
발행연도
2021.9
수록면
2,830 - 2,838 (9page)
DOI
https://doi.org/10.1016/j.net.2021.03.014

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This work deals with the assessment of the burnup capabilities of the Serpent Monte Carlo code topredict spent nuclear fuel (SNF) isotopic concentrations for low-enriched uranium (LEU) fuel at differentburnup levels up to 47 MWd/kgU. The irradiation of six UO2 experimental samples in three differentVVER-1000 reactor units has been simulated and the predicted concentrations of actinides up to 244Cmhave been compared with the corresponding measured values. The results show a global good agreementbetween calculated and experimental concentrations, in several cases within the margins of the nucleardata uncertainties and in a few cases even within the reported experimental uncertainties. The differences in the performances of the JEFF3.1.1, ENDF/B-VII.1 and ENDF/B-VIII.0 nuclear data libraries (NDLs)have also been assessed and the use of the newly released ENDF/B-VIII.0 library has shown an increasedaccuracy in the prediction of the C/E's for some of the actinides considered, particularly for the plutonium isotopes. This work represents a step forward towards the validation of advanced simulation toolsagainst post irradiation experimental data and the obtained results provide an evidence of the capabilities of the Serpent Monte-Carlo code with the associated modern NDLs to accurately compute SNFnuclide inventory concentrations for VVER-1000 type reactors

목차

등록된 정보가 없습니다.

참고문헌 (5)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0