메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김희영 (서울대학교) 박경애 (서울대학교) 정성래 (기상청) 백선균 (기상청) 이병일 (기상청) 신인철 (기상청) 정추용 (기상청) 김재관 (기상청) 정원찬 (한국전자통신연구원)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제34권 제1호
발행연도
2018.2
수록면
1 - 15 (15page)
DOI
https://doi.org/10.7780/kjrs.2018.34.1.1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Passive microwave sea surface temperatures (SST) were validated in the Northwest Pacific using a total of 102,294 collocated matchup data between Global Precipitation Measurement (GPM) / GPM Microwave Sensor (GMI) data and oceanic in-situ temperature measurements from March 2014 to December 2016. A root-mean-square (RMS) error and a bias error of the GMI SST measurements were evaluated to 0.93°C and 0.05°C, respectively. The SST differences between GMI and in-situ measurements were caused by various factors such as wind speed, columnar atmospheric water vapor, land contamination near coastline or islands. The GMI SSTs were found to be higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. As the wind speed increased at night, SST errors showed positive bias. In addition, other factors, coming from atmospheric water vapor, sensitivity degradation at a low temperature range, and land contamination, also contributed to the errors. One of remarkable characteristics of the errors was their latitudinal dependence with large errors at high latitudes above 30°N. Seasonal characteristics revealed that the errors were most frequently observed in winter with a significant positive deviation. This implies that SST errors tend to be large under conditions of high wind speeds and low SSTs. Understanding of microwave SST errors in this study is anticipated to compensate less temporal capability of Infrared SSTs and to contribute to increase a satellite observation rate with time, especially in SST composite process.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0