메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
변기환 (국립정신건강센터 중독정신건강의학과) 김란 (국립정신건강센터 임상심리건강과) 한주현 (국립정신건강센터 임상심리건강과) 고영미 (국립정신건강센터) 노성원 (한양대학교) 이태경 (국립정신건강센터)
저널정보
대한신경정신의학회 신경정신의학 신경정신의학 제56권 제1호
발행연도
2017.2
수록면
35 - 44 (10page)
DOI
https://doi.org/10.4306/jknpa.2017.56.1.35

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives The purpose of this study was to evaluate the psychometric properties of the Korean version of the Richmond Compulsive Buying Scale (RCB-K). Methods Participants (n=598) included patients recruited through an online panel survey. For the semantic adaptation step, the scale was translated into Korean and then back-translated to English by one psychologist, one public health professional, one psychiatrist who could speak both Korean and English, and one professional translator, without communication between those involved. A confirmatory factor analysis was performed to test whether the factor structure of the RCB-K was consistent with the English version. Convergent validity was assessed by correlating the RCB-K scores with those of other scales (i.e., O’Guinn & Faber’s Compulsive Buying Scale, Problem Gambling Inventory). Results The factor structure of the RCB-K was consistent with the two-factor structure established for the original RCB. Cronbach’s α was high (0.906), indicating that the reliabilities of the items in each subscale were satisfactory. The RCB-K score was significantly correlated with those for the O’Guinn & Faber’s Compulsive Buying Scale (r=0.7) and the Problem Gambling Inventory (r=0.422). Conclusion The results of the present study indicate that the RCB-K is an effective and valid scale for evaluating the severity of compulsive buying. The findings suggest that the RCB-K is a promising assessment tool for use in the treatment and study of online compulsive buying behavior.

목차

등록된 정보가 없습니다.

참고문헌 (4)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0