메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Somenath Chakraborty (The University of Southern Mississippi)
저널정보
한국컴퓨터게임학회 한국컴퓨터게임학회논문지 한국컴퓨터게임학회논문지 제34권 제3호
발행연도
2021.9
수록면
133 - 141 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Regarding high-dimensional heterogeneous data, combined with the existing algorithms' poor mining accuracy and parameter sensitivity, this paper proposes a local outlier mining algorithm based on neighborhood density. Use region segmentation to split high-dimensional data into reasonable sub-regions, reducing the difficulty of processing a large amount of high-dimensional data. The kernel neighborhood density is used to replace the average neighborhood density, so that the density calculation has nothing to do with data heterogeneity. Finally, the neighborhood state and outlier state of the data are further determined on the basis of neighborhood density to improve the accuracy of outlier mining. Through artificial and UCI data set simulation results, it shows that data volume and data dimension are the main factors that affect data outlier mining. The accuracy, coverage, and efficiency of the algorithm proposed in this paper are significantly better than those of the comparison algorithm, and it has better adaptability to different types of data sets.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0