메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박찬준 (고려대학교) 서재형 (고려대학교) 이설화 (고려대학교) 문현석 (고려대학교 Human-inspired AI 연구소) 어수경 (고려대학교) 임희석 (고려대학교)
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제12권 제11호
발행연도
2021.11
수록면
109 - 117 (9page)
DOI
https://doi.org/10.15207/JKCS.2021.12.11.109

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 인간과 컴퓨터의 상호작용(HCI)을 위한 수단으로 음성기반 인터페이스의 사용률이 높아지고 있다. 이에 음성인식 결과에 오류를 교정하기 위한 후처리기에 대한 관심 또한 높아지고 있다. 그러나 sequence to sequence(S2S)기반의 음성인식 후처리기를 제작하기 위해서는 데이터 구축을 위해 human-labor가 많이 소요된다. 최근 기존의 구축 방법론의 한계를 완화하기 위하여 음성인식 후처리기를 위한 새로운 데이터 구축 방법론인 Back TranScription(BTS)이 제안되었다. BTS란 TTS와 STT 기술을 결합하여 pseudo parallel corpus를 생성하는 기술을 의미한다. 해당 방법론은 전사자(phonetic transcriptor)의 역할을 없애고 방대한 양의 학습 데이터를 자동으로 생성할 수 있기에 데이터 구축에 있어서 시간과 비용을 단축할 수 있다. 본 논문은 기존의 BTS 연구를 확장하여 어떠한 기준 없이 데이터를 구축하는 것보다 어투와 도메인을 고려하여 데이터 구축을 해야함을 실험을 통해 검증을 진행하였다.

목차

등록된 정보가 없습니다.

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0