메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
무하마드 나집 울라 (Pakistan Bureau of Statistics) 김기수 (영남대학교)
저널정보
박정희새마을연구원 새마을학연구 새마을학연구 제2권 제2호
발행연도
2017.12
수록면
135 - 176 (42page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
One of the major issues for policy makers in Pakistan is handling the continuing increase of the level of unemployment. Thus, forecasting unemployment rate is imperative to policy makers. This study aims to explore the best forecasting model among ARIMA, ARFIMA and exponential smoothing for forecasting unemployment. Secondly, this study analyzed unemployment using time-series techniques, measured long and short run relationship with population growth, labor force participation rate, crop production, and investigated the causality between unemployment and other variables. Time series data ranging from 1965 to 2014 is collected from Pakistan Economic Survey for analysis. This study evaluated the forecasting performance of the three models by using the forecast accuracy criterion such as mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE) and Theil’s U statistics. Double Exponential Smoothing model is chosen as the best forecasted model for unemployment rate on the basis of forecast accuracy criterion. Augmented Dickey Fuller (ADF) and Phillips-Perron (PP) test is used for checking stationarity in the variables. At level, the variables were nonstationary and become stationary at first difference. The results of Johnson cointegration and Vector Error Correction model (VECM) indicated that there exists long and short run cointegration relationship between unemployment rate and other variables. Granger Causality test shows bi-directional causality running from crop production toward population growth.

목차

등록된 정보가 없습니다.

참고문헌 (89)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0