메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jie Tan (Institute of Seismology) Mahadi Masud (University of Houston) Xiaoming Qin (Tongji University) Cheng Yuan (Tongji University) Qingzhao Kong (Tongji University) Y.L.Mo (University of Houston)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.28 No.5
발행연도
2021.11
수록면
593 - 603 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Pier column, as the most critical load-bearing member of bridge, can bear multiple loads including axial forces,shear forces, bending moments, etc. The varied cross section at the column interface and bearing platform or drilled shaft leads to harmful stress concentration that can potentially compromise the structural integrity. In order to improve the ductility of bridge structure, a pier column is often designed with a variable cross-section region to dissipate energy through plastic deformation. For better understanding the health condition of pier column in its service life, it is of great significance to obtain the damage severity information in the variable cross-section region. This study utilizes an active sensing method enabled by distributed Lead Zirconate Titanate (PZT)-based Smart Aggregate (SA) sensors to monitor the damage initiation and development near the bottom of a pier column. Crack damage in variable cross-section region functions as a stress relief that attenuates propagating stress wave energy between SA pairs. Both the numerical and experimental results show that the reduction ratio of the stress wave energy is consistent with the crack development, thus validating the reliability of the investigated approach. SA-based technology can be used as a potential tool to provide early warning of damage in variable cross-section region of bridge structures.

목차

등록된 정보가 없습니다.

참고문헌 (43)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0