메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jungwon Lee (Kyungpook National University) Sang-hyo Park (Kyungpook National University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.17 No.1
발행연도
2023.3
수록면
13 - 19 (7page)
DOI
10.5626/JCSE.2023.17.1.13

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, deep learning-based super-resolution (SR) models have been used to improve SR performance by equipping preprocessing networks with baseline SR networks. In particular, in video SR, which creates a high-resolution (HR) image with multiple frames, optical flow extraction is accompanied by a preprocessing process. These preprocessing networks work effectively in terms of quality, but at the cost of increased network parameters, which increase the computational complexity and memory consumption for SR tasks with restricted resources. One well-known approach is the knowledge distillation (KD) method, which can transfer the original model’s knowledge to a lightweight model with less performance degradation. Moreover, KD may improve SR quality with reduced model parameters. In this study, we propose an effective KD method that can effectively reduce the original SR model parameters and even improve network performance. The experimental results demonstrated that our method achieved a better PSNR than the original state-of-the-art SR network despite having fewer parameters.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. METHOD
IV. EXPERIMENTS
V. CONCLUSION
REFERENCES

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-569-001338292