메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장동수 (경희대학교) 이청용 (경희대학교) 김재경 (경희대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제29권 제1호
발행연도
2023.3
수록면
41 - 63 (23page)

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
전자상거래 시장의 꾸준한 성장으로 인해 추천 시스템의 필요성은 점차 강조되고 있으며, 최근에는 추천 성능의 향상을 목적으로 리뷰 텍스트를 사용하는 연구가 활발히 진행되고 있다. 특히 많은 연구들은 리뷰 텍스트의 감성 점수를 활용하여 제안되고 있는데, 감성 점수만을 사용하는 방법론은 리뷰 텍스트에 존재하는 구체적인 선호도 정보의 활용 측면에 한계를 가지며 이는 결과적으로 성능 향상에 제약으로 작용하게 된다. 이를 개선하기 위해 본 연구는 딥러닝 기반 추천모델에 온라인 리뷰 내 다양한 언어학적 요소들을 활용하여 고객의 선호도를 정교하게 학습할 수 있는 새로운 추천 방법론을 제안하였다. 이를 위해 먼저 고객과 상품 간 복잡한 상호작용을 고려할 수 있도록 딥러닝 모델을 통해 상호작용 관계를 비선형으로 학습하였다. 그리고 리뷰 텍스트를 효과적으로 활용할 수 있도록 언어학적 요소 중 고객의 구매 의사결정에 중요한 영향을 미치는 인지적 요인, 정서적 요인 그리고 언어 스타일 매칭을 사용하였다. 실험은 Amazon.com에서 수집한 온라인 리뷰 데이터를 사용하여 진행하였고, 실험 결과 제안 모델의 우수함을 검증할 수 있었다. 본 연구는 추천시스템에서 리뷰 텍스트 내 고객 선호도에 대한 정보를 효과적으로 활용하는 방법론을 제안하여 연구의 이론적 및 방법론 측면에 기여하였다.

목차

1. 서론
2. 관련 연구
3. DRM-IRA 프레임워크
4. 실험
5. 결론 및 시사점
참고문헌(References)
Abstract

참고문헌 (74)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0