메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
강예성 (경상대학교) 김성헌 (경상대학교) 강정균 (경상대학교 농업생명과학대학 생물산업기계공학과(농업생명과학연구원)) 홍영기 (농촌진흥청) Tapash Kumar Sarkar (경상대학교) 류찬석 (경상대학교)
저널정보
경상대학교 농업생명과학연구원(구 경상대학교 시설원예연구소) 농업생명과학연구 농업생명과학연구 제50권 제6호
발행연도
2016.12
수록면
183 - 190 (8page)
DOI
https://doi.org/10.14397/jals.2016.50.6.183

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recently, remote sensing technology as a nondestructive method has been utilized to detectthe quantity and quality of crops using unmanned aerial system. To predict vegetation growth(leaf dry mass and nitrogen content) of soybean, two vegetation index(NDVI and Green NDVI)were calculated from images acquired by multi-spectral camera mounted on a UAV and eachprediction models between vegetation growth and index were evaluated. As a result, there wasno significant difference between vegetation growth and index when each vegetation stage foreach yellow and black bean were compared to each other. However, there was significantdifference between vegetation growth and index when all vegetation stage for each yellow andblack bean were compared to each other. Moreover, there was significant difference betweenvegetation growth and NDVI(r= 0.799 for leaf dry mass, r= 0.796 for nitrogen content), andGreen NDVI(r= 0.860 for leaf dry mass, r= 0.845 for nitrogen content) for all vegetation stageswith all soybeans. The accuracy and precision of Green NDVI model(R2= 0.740 for leaf drymass, R2= 0.714 for nitrogen content) were better than those of NDVI model regardless ofvarieties and vegetation growth. Therefore, Green NDVI has considerable potential to detect thequantity and quality of soybeans.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0