메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제23권 제2호
발행연도
2010.4
수록면
317 - 323 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Measures are very useful tools for comparing the shape variability in statistical shape analysis. For examples, the Procrustes statistic(PS) is isolated measure, and the mean Procrustes statistic(MPS) and the root mean square measure(RMS) are overall measures. But these measures are very subjective, complicated and moreover these measures are not statistical for comparing the shape variability. Therefore we need to study some tests. It is well known that the Hotelling's T<sup>2</sup> test is used for testing shape variability of two independent samples. And for testing shape variabilities of several independent samples, instead of the Hotelling's T<sup>2</sup> test, one way analysis of variance(ANOVA) can be applied. In fact, this one way ANOVA is based on the balanced samples of equal size which is called as BANOVA. However, If we have unbalanced samples with unequal size, we can not use BANOVA. Therefore we propose the unbalanced analysis of variance(UNBANOVA) for testing shape variabilities of several independent samples of unequal size.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001592982