메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제32권 제1호
발행연도
2019.2
수록면
41 - 68 (28page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
멀티 뷰 기법은 데이터를 다양한 관점에서 보려는 접근 방법이며 데이터의 다양한 정보를 통합하여 사용하려는 시도이다. 최근 많은 연구가 진행되고 있는 멀티 뷰 기법에서는 단일 뷰 만을 이용하여 모형을 학습시켰을 때 보다 좋은 성과를 보인 경우가 많았다. 멀티 뷰 기법에서 딥 러닝 기법의 도입으로 이미지, 텍스트, 음성, 영상 등 다양한 분야에서 좋은 성과를 보였다. 본 연구에서는 멀티 뷰 기법이 인간 행동 인식, 의학, 정보 검색, 표정 인식 분야에서 직면한 여러 가지 문제들을 어떻게 해결하고 있는지 소개하였다. 또한 전통적인 멀티 뷰 기법들을 데이터 차원, 분류기 차원, 표현 간의 통합으로 분류하여 멀티 뷰 기법의 데이터 통합 원리를 리뷰 하였다. 마지막으로 딥 러닝 기법 중 가장 범용적으로 사용되고 있는 CNN, RNN, RBM, Autoencoder, GAN 등이 멀티 뷰 기법에 어떻게 응용되고 있는지를 살펴보았다. 이때 CNN, RNN 기반 학습 모형을 지도학습 기법으로, RBM, Autoencoder, GAN 기반 학습 모형을 비지도 학습 기법으로 분류하여 이 방법들이 대한 이해를 돕고자 하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001588224