메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제32권 제1호
발행연도
2019.2
수록면
111 - 128 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
지하철은 많은 승객들을 원거리까지 안전하고, 신속·정확하게 원하는 지점으로 대량 수송할 수 있는 친환경적인 교통수단이다. 지하철의 공익성을 증대시키기 위해서는 정확한 승객 수요 예측이 이루어져야 한다. 본 연구는 정확한 지하철 수요예측을 위하여, 군집분석을 통해 서울시 1-9호선 지하철역들을 군집화 하였다. 그 후, 전체 역과 각 군집 별 최종 예측 모형을 제시하였다. 군집화 결과, 294개의 역이 3개로 군집화 되었으며 그룹 1은 상공업지구, 그룹 2는 주상복합지구, 그룹 3은 주거지구가 중심이 되는 역들로 나타났다. 그 후 각 군집 별로 다양한 데이터 마이닝 기법을 이용해 지하철 승차인원 예측 모형을 제시하고, 수요 예측에 중요한 영향을 미치는 요인들을 도출하였다. 그리고 최종 모형을 바탕으로 2018년 10월에 개통될 서울시 9호선 3단계 연장역인 8개 신설역의 3개월 수요를 예측하였다. 8개 신설역의 월평균 시간당 평균 승차인원은 약 241에서 452명, 월평균 시간당 최대 승차인원은 약 969에서 1,515명으로 추정되었다. 본 분석의 최종 모형을 활용한 신설역의 지하철 수요 예측은 대중교통 정책 결정을 위한 기초자료로 활용되어 효율적인 지하철 운영 방안 수립에 기여할 수 있을 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001588188