메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이인선 (성균관대학교) 이근백 (성균관대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제35권 제6호
발행연도
2022.12
수록면
703 - 724 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
다변량 경시적 자료 분석은 반복 측정된 자료에 존재하는 상관관계를 올바르게 추정하면서 자료를 분석해야 한다. 경시적 연구에서는 다변량 경시적 자료가 주로 생성되지만, 기존 통계적 모형은 대부분 단변량으로 분석되어 다변량 경시적 자료에 존재하는 복잡한 상관관계를 제대로 설명하지 못하게 된다. 따라서 본 논문에서는 복잡한 상관관계를 설명하기 위해 공분산 행렬을 모형화하는 다양한 방법에 대해 고찰한다. 그 중 수정된 콜레스키 분해, 수정된 콜레스키 블록분해와 초구분해를 살펴본다. 그리고 일반화 자기회귀모수 행렬이 가지는 희박성 문제를 해결하기 위해 베이지안 방법을 이용하여 청소년 패널 데이터를 분석한다. 청소년 패널 데이터는 다변량 경시적 자료이며, 반응 변수로는 학교 적응도, 학업성취도, 휴대전화 의존도를 고려한다. 자기 상관 구조와 혁신 표준 편차 구조를 달리 가정하여 여러 모형을 비교한다. 가장 적합한 모형에 대해 학교 적응도와 학업 성취도에 대해 모든 설명 변수가 유의미하며, 휴대전화 의존도가 반응 변수일 때 사교육 시간을 제외한 모든 설명 변수가 유의미한 것으로 나타난다.

목차

Abstract
1. 서론
2. 다변량 선형 모형
3. 자료 분석
4. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001441451