메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
차봉건 (성균관대학교) 최민진 (성균관대학교) 이종욱 (성균관대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.50 No.6
발행연도
2023.6
수록면
511 - 520 (10page)
DOI
10.5626/JOK.2023.50.6.511

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
심층신경망은 부정확한 레이블을 가진 데이터를 학습하는 경우 일반화 성능이 크게 저하되는 문제가 있다. 기존 연구는 모델이 학습 초기 단계에 정답 레이블을 가진 깨끗한 데이터를 주로 학습하는 경향을 관찰하였고, 이를 기반으로 손실 값이 작은 샘플을 깨끗한 데이터로 간주하여 데이터를 선별적으로 학습하는 샘플 선택 방법을 통해 성능을 개선하였다. 그러나 노이즈 레이블이 정답 레이블과 유사한 경우(예: 물개 vs 수달) 모델이 초기 학습 과정에서 노이즈 데이터를 빠르게 학습하여 샘플 선택 방법이 효과적이지 못한 한계가 있다. 본 논문에서는 사전 학습된 언어-영상 모델의 제로 샷 예측을 기반으로 모델의 초기 학습 과정 없이 깨끗한 데이터를 효과적으로 구분하여 학습하는 SLIP을 제안한다. 본 연구의 제안모델은 CIFAR-10, CIFAR-100, WebVision 데이터셋에서 학습 결과 기존 제안 방법들 대비 최대 18.45%p 개선된 성능을 보인다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 배경 지식
4. 제안 방법
5. 실험
6. 실험 결과
7. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0