메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Steve W. Haga (National Sun Yat-sen University) Wei-Ming Ma (Air Force Academy) William S. Chao (The Association of Enterprise Architects Taiwan Chapter)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.17 No.2
발행연도
2023.6
수록면
60 - 70 (11page)
DOI
10.5626/JCSE.2023.17.2.60

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The activity diagram (AD) is one of the UML 2.0 diagrams. Research has sought a precise semantic representation for the AD, partly because such representations can help to verify whether a specific AD is semantically consistent with other corresponding UML diagrams. In this study, we propose the Action Transition Graph (ATG) for semantic representation of the AD. The ATG represents the AD behavior as a finite state machine. One benefit of the ATG is that it is derived from process algebra equations, according to a precise procedure that will be formally presented. The grammar of the process algebra is also given, including an extension for representing parallel steps. This grammar allows the AD’s behavior to be described by algebraic equations. Writing simple-text equations can help to simplify and structure the process of constructing ADs. In addition, these process algebra equations can be parsed by the grammar to obtain an overview diagram for ADs. The proposed overview diagram contains meaningful high-level information for the AD, and it is also shown to be directly relatable to both the underlying AD and the corresponding ATG that defines its semantic meaning.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. STRUCTURE-BEHAVIOR COALESCENCE FOR FORMALIZING UML 2.0 ACTIVITY DIAGRAMS
IV. EVALUATION OF THE SBC METHOD
V. SUMMARY AND CONCLUSION
REFERENCES

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-569-001783108