메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Miran Kim (Gyeongsang National University)
저널정보
한국음성학회 말소리와 음성과학 말소리와 음성과학 제15권 제2호
발행연도
2023.6
수록면
13 - 20 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study explores the potential of automated speech recognition (ASR) in assessing English learners’ pronunciation. We employed ASR technology, acknowledged for its impartiality and consistent results, to analyze speech audio files, including synthesized speech, both native-like English and Korean-accented English, and speech recordings from a native English speaker. Through this analysis, we establish baseline values for the word error rate (WER). These were then compared with those obtained for human raters in perception experiments that assessed the speech productions of 30 first-year college students before and after taking a pronunciation course. Our sub-group analyses revealed positive training effects for Whisper, an ASR tool, and human raters, and identified distinct human rater strategies in different assessment aspects, such as proficiency, intelligibility, accuracy, and comprehensibility, that were not observed in ASR. Despite such challenges as recognizing accented speech traits, our findings suggest that digital tools such as ASR can streamline the pronunciation assessment process. With ongoing advancements in ASR technology, its potential as not only an assessment aid but also a self-directed learning tool for pronunciation feedback merits further exploration.

목차

Abstract
1. Introduction
2. Methodology
3. Results and Discussions
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0