메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
나종환 (인하대학교) 이보원 (인하대학교)
저널정보
한국음성학회 말소리와 음성과학 말소리와 음성과학 제15권 제2호
발행연도
2023.6
수록면
43 - 51 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 음성의 발화 속도와 휴지 구간의 길이 그리고 화자의 연령과 성별에 기반한 방언 분류 접근 방법을 제안한다. 방언 분류는 음성 분석을 위한 중요한 기술 중 하나이다. 예를 들어 정확한 방언 분류 모델은 화자 인식 또는 음성 인식의 성능을 향상시킬 수 있는 잠재력을 가질 수 있다. 선행 연구에 따르면, Mel-Frequency Cepstral Coefficients(MFCC) 특징을 사용한 딥러닝 기반의 연구가 주류를 이루었다. 우리는 지역 간의 음향적 차이에 주목하여 그 차이를 바탕으로 추출한 특징을 사용하여 방언 분류를 진행하였다. 본 논문에서는 음성의 발화 속도, 휴지구간의 길이 특성을 추출하여 사용하며 이와 함께 화자의 연령과 성별과 같은 메타데이터를 추가로 사용하는 새로운 접근 방법을 제안한다. 실험 결과 제안된 접근 방법이 더 높은 정확도를 보이는 것을 확인하였으며 특히 음성의 발화 속도 특성을 사용하는 것이 기존 MFCC만을 사용하는 방법보다 향상된 성능을 보여준다는 것을 확인할 수 있었다. MFCC 특성만을 사용한 방법과 비교했을 때 본 논문에서 제안한 특성들을 모두 사용하였을 때의 정확도는 91.02%에서 97.02%로 향상되었다.

목차

Abstract
1. 서론
2. 선행 연구
3. 제안하는 접근 방법
4. 실험 결과
5. 결론
References
국문초록
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0