메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유용상 (연세대학교) 정민화 (연세대학교) 이승민 (연세대학교) 송민 (연세대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제29권 제2호
발행연도
2023.6
수록면
219 - 240 (22page)

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
사용자가 만족감을 느끼며 상호작용할 수 있는 대화형 인공지능을 개발하기 위한 노력이 이어지고 있다. 대화형 인공지능 개발을 위해서는 사람들의 실제 대화를 반영한 학습 데이터를 구축하는 것이 필요하지만, 기존 데이터셋은 질문-답변 형식이 아니거나 존대어를 사용하여 사용자가 친근감을 느끼기 어려운 문체로 구성되어 있다. 이에 본 논문은 온라인 커뮤니티에서 수집한 30,767개의 질문-답변 문장 쌍으로 구성된 대화 데이터셋(KOMUChat)을 구축하여 제안한다. 본 데이터셋은 각각 남성, 여성이 주로 이용하는 연애상담 게시판의 게시물 제목과 첫 번째 댓글을 질문-답변으로 수집하였다. 또한, 자동 및 수동 정제 과정을 통해 혐오 데이터 등을 제거하여 양질의 데이터셋을 구축하였다. KOMUChat의 타당성을 검증하기 위해 언어 모델에 본 데이터셋과 벤치마크 데이터셋을 각각 학습시켜 비교분석하였다. 그 결과 답변의 적절성, 사용자의 만족감, 대화형 인공지능의 목적 달성 여부에서 KOMUChat이 벤치마크 데이터셋의 평가 점수를 상회했다. 본 연구는 지금까지 제시된 오픈소스 싱글턴 대화형 텍스트 데이터셋 중 가장 대규모의 데이터이며 커뮤니티 별 텍스트 특성을 반영하여 보다 친근감있는 한국어 데이터셋을 구축하였다는 의의를 가진다.

목차

1. 서론
2. 관련 연구
3. 온라인 커뮤니티 대화형 데이터셋
4. 데이터 수집과 전처리
5. 언어 모델을 활용한 데이터 타당성 검증
6. 데이터셋의 활용성
7. 결론
참고문헌(References)
Abstract

참고문헌 (47)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-003-001752259