메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Qi Wang (Shandong Vocational College of Industry)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.12 No.3
발행연도
2023.6
수록면
252 - 260 (9page)
DOI
10.5573/IEIESPC.2023.12.3.252

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Automated machine-learning technology can achieve the automation, efficiency, and intelligence of machine learning. This technology can lower the application threshold of artificial intelligence (AI) and has attracted academic attention. Therefore, taking a typical classification problem as an example, this study proposes a framework of a machine-learning pipeline automation design algorithm combining a Bayesian algorithm and reinforcement learning. Aiming at the CASH problem, the study divides the machine-learning pipeline design problem into two sub-problems. One is to realize a machine-learning pipeline structure search based on reinforcement learning. The other is to realize machine-learning pipeline hyperparameter optimization configurations based on the Bayesian network model. The experimental results showed that when the time budget was four hours, the average balanced accuracy of Auto-PLD(Ed note: You need to define what these are in the abstract.) was 0.003 higher than that of Auto-PLD-random and 0.001 higher than that of Auto-sklearn. The success rate of the Auto-PLD machine-learning pipeline evaluation on various datasets exceeded 92%. Based on the Bayesian model and reinforcement learning, the machine-learning pipeline automation design algorithm framework can also play a good role in practical applications. Moreover, it can promote the development of artificial intelligence technology.

목차

Abstract
1. Introduction
1. Related Works
2. Construction of Auto-PLD Algorithm Framework for Classic Scenes
3. Performance Evaluation of the Auto-PLD Algorithm
4. Conclusion
5. Fundings
Reference

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-569-001738709