메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
신상준 (성균관대학교) 신동균 (성균관대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2023년도 대한전자공학회 하계학술대회 논문집
발행연도
2023.6
수록면
2,238 - 2,242 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper addresses the limitations of realtime application of object detection techniques in embedded computing environments. To overcome these limitations, compression methods such as pruning and quantization are being investigated. In this study, various quantization techniques, including post-training quantization, partial quantization, and quantization-aware training, are applied to the YOLO v3 model to evaluate and analyze their effects in embedded system environments. Experiments were conducted using the YOLO v3 model and the PASCAL VOC dataset. The experimental results show that the quantized models can reduce model size and inference time but result in accuracy loss.
Therefore, this research contributes to improving object detection performance in embedded systems by proposing and analyzing various quantization techniques for lightweighting object detection technology in embedded environments.

목차

Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0