메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김홍비 (한국원자력연구원) 유용균 (한국원자력연구원)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제28권 제5호
발행연도
2023.10
수록면
31 - 39 (9page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 자연어 처리(NLP) 기술, 특히 ChatGPT를 비롯한 거대 언어 모델(LLM)의 발전으로 특정 전문지식에 대한 질의응답(QA) 시스템의 연구개발이 활발하다. 본 논문에서는 거대언어모델과 문서검색 알고리즘을 활용하여 한국원자력연구원(KAERI)의 규정 등 다양한 문서를 이해하고 사용자의 질문에 답변하는 시스템의 동작 원리에 대해서 설명한다. 먼저, 다수의 문서를 검색과 분석이 용이하도록 전처리하고, 문서의 내용을 언어모델에서 처리할 수 있는 길이의 단락으로 나눈다. 각 단락의 내용을 임베딩 모델을 활용하여 벡터로 변환하여 데이터베이스에 저장하고, 사용자의 질문에서 추출한 벡터와 비교하여 질문의 내용과 가장 관련이 있는 내용들을 추출한다. 추출된 단락과 질문을 언어 생성 모델의 입력으로 사용하여 답변을 생성한다. 본 시스템을 내부 규정과 관련된 다양한 질문으로 테스트해본 결과 복잡한 규정에 대하여 질문의 의도를 이해하고, 사용자에게 빠르고 정확하게 답변을 제공할 수 있음을 확인하였다.

목차

요약
Abstract
1. 서론
2. 챗봇 시스템 구현
3. 성능 평가
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088307335