메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kyung-Bong Namkung (Sunmoon University) Sung Chul Yun (Sunmoon University)
저널정보
한국식물병리학회 The Plant Pathology Journal The Plant Pathology Journal 제39권 제5호
발행연도
2023.10
수록면
504 - 512 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
After transitioning from periodic to model-based control policy for fire blight blossom infection, it is crucial to provide the timing of field application with easy and accurate information. To assess the risk of blossom infection, Maryblyt was employed in 31 sites across appleproducing regions nationwide, including areas prone to fire blight outbreaks, from 2021 to 2023. In 2021 and 2023, two and seven sites experienced Blossom Infection Risk-Infection warning occurrences among 31 sites, respectively. However, in 2022, most of the sites observed Blossom Infection Risk-Infection from April 25 to 28, highlighting the need for blossom infection control. For the comparison between the two modelbased control approaches, we established treatment 1, which involved control measures according to the Blossom Infection Risk-Infection warning and treatment 2, aimed at maintaining the Epiphytic Infection Potential below 100. The analysis of control values between these treatments revealed that treatment 2 was more effective in reducing Blossom Infection Risk-Infection and the number of days with Epiphytic Infection Potential above 100, with respective averages of 95.6% and 93.0% over the three years. Since 2022, the implementation of the K-Maryblyt system and the deployment of Automated Weather Stations capable of measuring orchard weather conditions, with an average of 10 stations per major apple fire blight county nationwide, have taken place. These advancements will enable the provision of more accurate and timely information for farmers based on fire blight models in the future.

목차

Materials and Methods
Results
Discussion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0