메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강민서 (국립원예특작과학원) 심재상 (국립원예특작과학원) 이혜진 (국립원예특작과학원) 이희주 (국립원예특작과학원) 장윤아 (국립원예특작과학원) 이우문 (국립원예특작과학원) 이상규 (국립원예특작과학원) 위승환 (국립원예특작과학원)
저널정보
(사)한국생물환경조절학회 생물환경조절학회지 생물환경조절학회지 제32권 제4호
발행연도
2023.10
수록면
366 - 376 (11page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 영상데이터와 환경데이터를 활용하여 배추의 생육을 예측할 수 있는 모형을 개발하기 위하여 수행되었다. 강원도 평창군에 소재한 시험포에 ‘청명가을’ 배추를 7월 11일, 7월 19일, 7월 27일 3차례 정식하여 9월 12일까지 생육, 영상, 환경데이터를 수집하였다. 배추 생육예측 모형에 활용할 핵심인자를 선발하기 위하여 수집한 생육데이터와 기상데이터를 활용해 요소간 상관분석을 수행한 결과 생체중과 GDD, 생체중과 누적일사량의 상관계수가 0.88로 높은 상관계수를 보였으며, 생체중과 초장, 생체중과 피복면적이 각각 0.78, 0.79로 유의미한 상관 관계를 보였다. 높은 상관관계를 보인 요소들 중에서 선행문헌을 참고하여 모형개발에 활용할 핵심요소로 영상에서는 피복면적을 환경데이터에서는 생육도일(GDD)을 선정하였다. GDD, 피복면적, 생육데이터를 조합하여 배추의 생체중, 엽수, 엽면적 예측 모형을 개발하였다. 단 요인 모형으로 2차함수, 시그모이드, 로지스틱 모형을 제작하였으며 평가 결과 시그모이드 형태의 예측 모형이 가장 설명력이 좋았다. GDD와 피복면적을 조합한 다요인 생육예측 모형을 개발한 결과 생체중, 엽수, 엽면적의 결정계수가 0.9, 0.95, 0.89으로 단요인 예측모형보다 예측정확도가 개선된 것을 확인할 수 있었다. 개발한 모형을 검증하기 위하여 검증시험포의 조사결과로 검증한 결과 관측 값과 예측 값의 결정계수는 0.91이며 RMSE가 134.2g으로 높은 예측 정확도를 보였다. 기존의 생육 관측의 경우 기상데이터로만 예측을 하거나 영상데이터로만 예측하는 경우가 많았는데 이는 현장의 상태를 반영하지 못하거나 배추가 결구 되는 특성을 반영하지 못해 예측 정확도가 낮았다. 두 예측방법을 혼합해 각 관측방법의 약점을 보완해 줌으로써 대한민국에서 수행되고 있는 기간채소 작황예측의 정확도를 높일 수 있을 것으로 기대된다.

목차

Abstract
서론
재료 및 방법
결과 및 고찰
적요
Literature Cited

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088312014