메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yu-Bin Hong (한동대학교) Kyungjun Lee (한동대학교) DongNyenog Heo (한동대학교) Heeyoul Choi (한동대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.50 No.11
발행연도
2023.11
수록면
976 - 984 (9page)
DOI
10.5626/JOK.2023.50.11.976

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
다양한 생성모델 기반의 신약 후보 생성 방법 중, 회귀적 신경망 (RNNs) 기반의 모델이 최고 성능을 보여왔다. RNN의 장기 의존성 문제를 해결하기 위해 Transformer 기반의 모델이 제안되어왔으나, RNN 기반 모델에 비해서 낮은 성능을 보였는데, Transformer 모델의 과적합 문제가 그 원인일 수 있다. 해당문제를 완화하도록, 본 논문에서는, 큰 decoder 모델을 간단한 순방향 신경망으로 변환하는 모델을 제안한다. 실험결과, 제안된 모델이 기존 최고 성능 모델을 주요 지표들에서 앞서며, 다른 지표에서도 유사한 성능을 보이는 것을 확인했다. 또한, 제안하는 모델을 SARs-CoV-2 (COVID-19) 바이러스에 대항할 수 있는 신약 후보 생성에 적용하였고, 그렇게 생성된 신약 후보군들이 현재 시장에서 사용되는 약들인 Paxlovid, Molnupiravir, Remdesivir들 보다 더 효과적인 실험결과를 확인하였다.

목차

요약
Abstract
1. Introduction
2. Backgrounds
3. Molecule-Design Transformer (MD-TF)
4. Experiments
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088216099