메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Mohamed Chhiti (University S.M. Ben Abdellah Fez) Soibri Moindze (University S.M. Ben Abdellah Fez)
저널정보
대한수학회 대한수학회지 대한수학회지 제60권 제2호
발행연도
2023.3
수록면
327 - 339 (13page)
DOI
10.4134/JKMS.j220030

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $R$ be a commutative ring with identity and $S$ be a multiplicatively closed subset of $R$. In this article we introduce a new class of ring, called $S$-multiplication rings which are $S$-versions of multiplication rings. An $R$-module $M$ is said to be $S$-multiplication if for each submodule $N$ of $M$, $sN\subseteq JM\subseteq N$ for some $s\in S$ and ideal $J$ of $R$ (see for instance \cite[Definition 1]{DA.TA.UTSK}). An ideal $I$ of $R$ is called $S$-multiplication if $I$ is an $S$-multiplication $R$-module. A commutative ring $R$ is called an $S$-multiplication ring if each ideal of $R$ is $S$-multiplication. We characterize some special rings such as multiplication rings, almost multiplication rings, arithmetical ring, and $S$-$PIR$. Moreover, we generalize some properties of multiplication rings to $S$-multiplication rings and we study the transfer of this notion to various context of commutative ring extensions such as trivial ring extensions and amalgamated algebras along an ideal.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0