메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
황호성 (을지대학교 일반대학원 의료인공지능학과) 최용석 (을지대학교 보건과학대학 방사선학과) 이대원 (을지대학교 보건과학대학 방사선학과) 김동현 3 (을지대학교 인공지능융합시스템연구실) 김호철 (을지대학교 인공지능융합시스템연구실)
저널정보
대한의용생체공학회 의공학회지 의공학회지 제44권 제3호
발행연도
2023.6
수록면
167 - 175 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Chest PA is the basic examination of radiographic imaging. Moreover, Chest PA's demands are constantly increasing because of the Increase in respiratory diseases. However, it is not meeting the demand due to problems such as a shortage of radiological technologist, sexual shame caused by patient contact, and the spread of infectious diseases. There have been many cases of using artificial intelligence to solve this problem. Therefore, the purpose of this research is to build an artificial intelligence dataset of Chest PA and to find a posture evaluation method. To construct the posture dataset, the posture image is acquired during actual and simulated examination and classified correct and incorrect posture of the patient. And to evaluate the artificial intelligence posture method, a posture esti- mation algorithm is used to preprocess the dataset and an artificial intelligence classification algorithm is applied. As a result, Chest PA posture dataset is validated with in over 95% accuracy in all artificial intelligence classification and the accuracy is improved through the Top-Down posture estimation algorithm AlphaPose and the classification InceptionV3 algorithm. Based on this, it will be possible to build a non-face-to-face automatic Chest PA examination system using artificial intelligence.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0