메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Qiyu Li (Nanjing Tech University) Dachang Zhang (Nanjing Tech University) Hao Xu (Wuxi Metro Construction Co. Ltd) Yibi Li (Nanjing Tech University) Weiqun Chen (Nanrui Electric Power Design Corporation Limited) Kaixuan Zhang (The IT Electronics Eleventh Design & Research Institute Scientific and Technological Engineering Corporation Limited)
저널정보
국제구조공학회 Structural Engineering and Mechanics, An Int'l Journal Structural Engineering and Mechanics, An Int'l Journal Vol.86 No.2
발행연도
2023.4
수록면
261 - 276 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The use of the ordinary double nut (i.e., ODN) composed of a master nut (i.e., M-nut) and a slave nut (i.e., S-nut) is a highly efficient method to prevent bolts loosening. A novel double nut (i.e., FODN) composed of a master nut (i.e., M-nut) and flat slave nut (i.e., FS-nut) is proposed to save raw materials. The bolt fastening tests with single nut, ODN and FODN are performed to investigate the preload and counterbalance forces. Corresponding finite element analysis (FEA) models are established and validated by comparing the preload with the experimental results. The load-bearing capacity, the extrusion effect, and the contact stress of each engaged thread for ODN and FODN are observed by FEA. The experimental and simulated results revealed that the bolt fastening with double-nut has different load-transferring mechanisms from single-nut. Nevertheless, for double-nut/bolt assemblies, the FS-nut can provide load transfer that is like that of the S-nut, and the FODN is a reasonable and reliable fastening method. Furthermore, based on the theory of Yamamoto, a formula considering the extrusion effect is proposed to calculate the preload distribution of the double-nut, which is applicable to varying thicknesses of slave-nuts in double-nut/bolt assemblies.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0