메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장진수 (강원대학교 지구물리학과) 소병달 (강원대학교 지구물리학과) David A. Yuen (Department of Applied Physics and Applied Mathematics Columbia University USA)
저널정보
한국지질과학협의회 Geosciences Journal Geosciences Journal Vol.27 No.1
발행연도
2023.2
수록면
113 - 126 (14page)
DOI
10.1007/s12303-022-0029-7

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Stress interaction among many faults in earthquake prone region is strongly affected by the spatial distribution of faults. To build a robust Machine Learning (ML) algorithm for finding hidden relationships between fault distribution and its controlling factors, the performance of ML in dependence of various parameters, such as the complexity and data size of the fault distribution, needs to be investigated. We have, therefore, developed an ML algorithm by combining Principal Component Analysis (PCA) with a Random Forest (RF) to unveil the controlling factors on seismic fault distribution. We synthesized fault images for training of RF classifier ND (> 10,000) fault images, which scattered the faults in a square with R km R km. R, ranging from 200 km to 600 km, is a controlling factor of fault distribution. PCA extracts the dominant features of the seismic fault images to supply the refined training data to the RF. This leads to a dimensional reduction of the data. We tested the influence of the number of principal components (NP) on PCA performance in retaining the information. Larger and more variable R values (i.e., a more complicated fault distribution) with larger amounts of training data required more principal components for a full preservation of the original data. We quantified the optimized NP/ND ratio for an efficient RF classifier, which was about ~0.1 for the evaluating efficacy of the PCA. This showed that the RF classifiers is effective in predicting R values depending on the fault zone with R km × R km and not on specific fault locations. We propose that a small NP, equivalent to ~10% of the training data, suffices for training accurately RF classifier for fault distributions, which can reduce the complexity of fault distribution to understand stress interaction among many faults.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0