메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
임수정 (성균관대학교) 황선진 (성균관대학교)
저널정보
한국패션비즈니스학회 패션 비즈니스 패션 비즈니스 제27권 제1호
발행연도
2023.2
수록면
1 - 15 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study divided articles into two time periods, from 2012 to 2022, with the aim of using big data analysis to look at patterns in the ecosystem of fashion start-ups. The research method extracted top keywords based on TF(Term Frequency) and TF-IDF(Term Frequency-Inverse Document Frequency), analyzed the network, and derived centrality values. As a result of comparing the first and second fashion startup ecosystems, elements of policy, support, market, finance, and human capital were derived in the first period. In addition, in the second period, elements of policy, support, market, finance, and culture were derived. In the first period, the fashion startup ecosystem focused on fostering new designer startups by emphasizing support, finance, and human capital factors and focusing on policies. Meanwhile, in the second period, online-based fashion platform startups and fashion tech startups appeared with the support of digital transformation and fulfillment services triggered by COVID-19(Corona Virus Disease 19), private finances were emphasized, and cultural factors were derived along with success stories of fashion startups. This study is meaningful in that it helps in developing strategies for fashion startups to grow into sustainable companies.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0