메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Divya Rao (Manipal Academy of Higher Education) Rohit Singh (Manipal Academy of Higher Education) Vijayananda J (Data Science and Artificial Intelligence)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.12 No.2
발행연도
2022.5
수록면
175 - 183 (9page)
DOI
https://doi.org/10.1007/s13534-022-00221-3

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The larynx, or the voice-box, is a common site of occurrence of Head and Neck cancers. Yet, automated segmentation ofthe larynx has been receiving very little attention. Segmentation of organs is an essential step in cancer treatment-planning. Computed Tomography scans are routinely used to assess the extent of tumor spread in the Head and Neck as they arefast to acquire and tolerant to some movement. This paper reviews various automated detection and segmentation methods used for the larynx on Computed Tomographyimages. Image registration and deep learning approaches to segmenting the laryngeal anatomy are compared,highlighting their strengths and shortcomings. A list of available annotated laryngeal computed tomography datasets iscompiled for encouraging further research. Commercial software currently available for larynx contouring are briefed inour work. We conclude that the lack of standardisation on larynx boundaries and the complexity of the relatively small structuremakes automated segmentation of the larynx on computed tomography images a challenge. Reliable computer aided interventionin the contouring and segmentation process will help clinicians easily verify their findings and look for oversightin diagnosis. This review is useful for research that works with artificial intelligence in Head and Neck cancer, specificallythat deals with the segmentation of laryngeal anatomy.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0