메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
M. Rezayat (Sahand University of Technology) F. Najib (Sahand University of Technology)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.29 No.1
발행연도
2023.1
수록면
235 - 246 (12page)
DOI
10.1007/s12540-022-01217-5

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Using a thermal–mechanical process, the average grain size of Co35Ni34Cr24Mo7medium entropy alloy was reduced to 2 μm,resulted in 50% improvement of hardness. In this way, the kinetic of the recrystallization and grain growth were investigatedby annealing at the temperature range of 800–950 °C. Based on Differential Scanning Calorimetry analysis and microstructuralinvestigations, recrystallization began around 800 °C at prior grain boundaries, micro shear bands, and intersecteddeformation marking. Comparing Johnson–Mehl–Avrami–Kolmogorov and Austin-Ricket approaches for recrystallizationmodeling the, revealed that the latter is more accurate considering its basic theory, which involves reducing recrystallizationrate by impingement. Both recrystallization and grain growth activation energy were calculated around 380 kJ/mol, which isclose to the activation energy of self-diffusion of similar high/medium entropy alloys. The recrystallization and grain growthtime exponent were found to be less than 0.5, which indicates the heterogeneous deformation and recrystallization in structureand pining effect of Mo on the grain boundaries migration. It was observed that the annealed microstructure containsannealing twins, which their number and thickness are related to the recrystallized grain size. Moreover, it was revealed thatdue to the presence of annealing twins, the modified Hall–Petch equation with effective grain size is more appropriate toexplain the relation of grain size and hardness.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0