메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
성지현 (호서대학교) 이권용 (호서대학교) 이상원 (호서대학교) 석민재 (호서대학교) 김세린 (호서대학교) 조학수 (호서대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제33권 제6호
발행연도
2023.12
수록면
1,033 - 1,042 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 네트워크에서 침입 행위를 하는 플로우를 탐지하는 네트워크 침입 탐지 시스템을 제안한다. 대다수 연구에 활용되는 데이터세트는 시계열 정보를 포함하고 있지 않으며, 공격 사례가 적은 공격은 샘플 데이터 수가 부족해 탐지율 향상이 어렵다. 하지만 탐지 방안에 대해 연구 결과가 부족한 상황이다. 본 연구에서는 ANN(Artificial Neural Network) 모델과 스택 앙상블 기법을 활용한 선행 연구를 토대로 하였다. 앞서 언급한 문제점을 해결하기 위해 인접 플로우를 활용하여 시계열 정보를 추가하고 희소 공격의 샘플을 강화하여 학습하여 탐지율을 보강하였다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 방법론
IV. 실험 환경 및 평가지표
V. 연구 결과
VI. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088524701