메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seung-Hun Kang (Dongseo University) Byungdu Jo (Dongseo University) Seung-Jae Lee (Dongseo University)
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.28 No.4
발행연도
2023.12
수록면
415 - 419 (5page)
DOI
10.4283/JMAG.2023.28.4.415

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The quality of gamma camera images is determined by the characteristics of the image collimator. The size and length of the collimator’s holes, as well as the thickness of its septa, directly impact sensitivity and spatial resolution. These factors have conflicting optimization relationships with each other, and sensitivity and spatial resolution variations manifest differently based on combinations of different variables such as larger or smaller diameter holes, shorter or longer holes, thinner or thicker septa, and so on. Accordingly, appropriate collimator design plays a crucial role in optimizing the quality of gamma camera images. In this study, referencing the structure of an ELEGP collimator, we design a collimator that optimizes sensitivity and spatial resolution. To achieve this, collimators with various hole sizes, lengths, and septa thicknesses were designed, and simulations were conducted. Through this process, the most suitable conditions for optimizing the image quality of the gamma camera system were obtained. Geant4 Application for Tomographic Emission (GATE) simulations were performed for collimator optimization. Among 820 simulation results, the best image quality was achieved with a hole diameter of 2.6 ㎜, length of 28 ㎜, and septa thickness of 0.4 mm. If the collimator designed in this study is used, it is expected to provide superior images compared to those obtained with existing gamma camera systems.

목차

1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089235114