메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Amit Kumar Gupta (KIET Group of Institutions) Ankit Verma (KIET Group of Institutions) Vipin Kumar (KIET Group of Institutions) Nikhil Kumar (KIET Group of Institutions) Dowon Kim (Chonnam National University) Young-Jin Jung (Chonnam National University) Mangal Sain (Dongseo University)
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.28 No.4
발행연도
2023.12
수록면
530 - 543 (14page)
DOI
10.4283/JMAG.2023.28.4.530

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Breast cancer is a significant global health concern, stressing the urgent need for early detection. Early diagnosis improves access to varied treatments and significantly enhances patient outcomes. This study explores breast cancer detection over two days, aiming to create a precise and efficient machine learning model. The research uses a diverse dataset, combining clinical, genetic, and imaging data, including magnetic resonance imaging (MRI), X-ray, and electromagnetic data. Rigorous data preprocessing, including variable normalization and feature identification, enhances dataset quality. Predictive models use statistical techniques like logistic regression, decision trees, and random forest. Key metrics, such as accuracy, precision, recall, and area under the curve (AUC), assess model efficacy. Results reveal high accuracy and AUC scores, indicating potential for precise breast cancer detection. The study enhances our understanding of breast cancer dynamics, showcasing the effectiveness of machine learning for accurate and efficient early diagnosis. The research underscores diverse datasets and careful statistical modeling as crucial for predictive breast cancer capabilities.

목차

Abstract
1. Introduction
2. Related Work
3. Research Framework
4. Conclusion and Future Work
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089235285