메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김영진 (Pai Chai University) 차현종 (Pai Chai University) 강아름 (Pai Chai University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제29권 제1호(통권 제238호)
발행연도
2024.1
수록면
41 - 49 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현재 음성인식 기술은 꾸준히 발전하고 다양한 분야에서 널리 사용되고 있다. 본 연구에서는 음성 데이터 품질이 음성인식 모델에 미치는 영향을 알아보기 위해 데이터셋을 전체 데이터셋과 SNR 상위 70%의 데이터셋으로 나눈 후 Seamless M4T와 Google Cloud Speech-to-Text를 이용하여 각 모델의 텍스트 변환 결과를 확인하고 Levenshtein Distance를 사용하여 평가하였다. 실험 결과에서 Seamless M4T는 높은 SNR(신호 대 잡음비)을 가진 데이터를 사용한 모델에서 점수가 13.6으로 전체 데이터셋의 점수인 16.6보다 더 낮게 나왔다. 그러나 Google Cloud Speech-to-Text는 전체 데이터셋에서 8.3으로 높은 SNR을 가진 데이터보다 더 낮은 점수가 나왔다. 이는 새로운 음성인식 모델을 훈련할 때 SNR이 높은 데이터를 사용하는 것이 영향이 있다고 할 수 있으며, Levenshtein Distance 알고리즘이 음성인식 모델을 평가하기 위한 지표 중 하나로 쓰일 수 있음을 나타낸다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Verification
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0