메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이종호 (Korea Institute of Civil Engineering & Building Technology) 최규진 (Yonsei Univ.) 박초롱 (Yonsei Univ.) 이재욱 (Gachon Univ.) 손동욱 (Yonsei Univ.)
저널정보
한국생태환경건축학회 KIEAE Journal KIEAE Journal Vol.24 No.2(Wn.126)
발행연도
2024.4
수록면
97 - 106 (10page)
DOI
10.12813/kieae.2024.24.2.097

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: This study proposes a novel approach to reduce the severe damages caused by factory fires in South Korea. The current fire risk assessment system faces limitations in providing detailed evaluations for factory buildings. This research utilizes public data and machine learning to swiftly and accurately predict fire risks in factories and seeks methods to identify and manage high-risk areas within industrial complexes. Method: The research process encompasses data collection, preprocessing, model prediction, and the integration of spatial data using GIS. It leverages building information provided by the national data portal and fire scenario data set as control variables. Data preprocessing includes the simplification of categorical variables, creation of derived variables, and the conversion of string data into numeric data. The predictive outcomes are integrated with spatial data using GIS, and industrial complexes are subdivided into blocks for risk level grading. This method aims to make a practical contribution to the management and prevention of fire risks in industrial complexes. Result: This study classified and analyzed the characteristics of factory buildings in aged three industrial complexes, assessing regional differences. Utilizing the Random Forest model, fire risks were categorized into low, medium, and severe levels, and regression analysis was employed to evaluate the impact of factors on fire risk. A five-tier grading system based on GIS visualization comprehensively represents the fire risk by region, offering valuable information for fire risk management. This research contributes to the development of policies aimed at enhancing safety in industrial complexes and minimizing property loss.

목차

ABSTRACT
1. 서론
2. 이론적 고찰
3. 방법론 및 대상지 선정
4. 화재재산피해 크기 예측
5. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089622448