메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서승환 (한국건설기술연구원) 정문경 (한국건설기술연구원)
저널정보
한국지반공학회 한국지반공학회논문집 한국지반공학회논문집 제40권 제2호
발행연도
2024.4
수록면
65 - 79 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
본 연구는 전통적인 통계기반 ARIMA(Auto-Regressive Integrated Moving Average) 모델과 딥러닝 기반 LSTM(Long Short-Term Memory) 모델을 활용하여 굴착 현장의 지중경사계 데이터를 통한 흙막이 벽체 변형을 예측하고, 두 모델의 예측 성능을 비교 분석하였다. ARIMA 모델은 시간의 흐름에 따른 시계열 데이터의 선형적 패턴을 분석하는 데 강점을 보이는 반면, LSTM은 데이터의 복잡한 비선형 패턴과 장기 의존성을 포착하는 데 우수한 능력을 보여주었다. 본 연구는 흙막이 벽체 변형 예측을 위해 지중경사계 계측 데이터에 대한 전처리, 다양한 시계열 데이터 길이 및 입력변수 조건 등에 따른 성능 평가를 포함하였으며, LSTM 모델이 ARIMA 모델에 비해 통계적으로 유의미한 예측 성능 향상을 확인하였다. 본 연구의 결과는 굴착 현장에서의 지중경사계 데이터를 활용한 흙막이 벽체의 안정성 평가에 LSTM 모델을 효과적으로 적용할 수 있음을 보여준다. 또한 이를 바탕으로 향후 굴착 현장 전체에 대한 안전 모니터링 시스템 구축과 시계열 예측 모델 발전에 기여할 것으로 기대된다.

목차

Abstract
요지
1. 서론
2. 분석기법
3. 데이터 전처리 및 성능평가 방법
4. 실험결과
5. 결론
참고문헌 (References)

참고문헌 (37)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089672902