메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ho Jun Kim (Chung-Ang University) Hak Gu Kim (Chung-Ang University)
저널정보
중앙대학교 영상콘텐츠융합연구소 TECHART: Journal of Arts and Imaging Science TECHART: Journal of Arts and Imaging Science Vol.11 No.2
발행연도
2024.5
수록면
50 - 57 (8page)
DOI
10.15323/techart.2024.5.11.2.50

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Scene text segmentation is fundamental in computer vision applications such as optical character recognition (OCR) for augmented reality (AR). This study introduced the signed distance function (SDF) in scene text segmentation to mitigate jagged artifacts around text boundaries. In addition, high-resolution images require large-scale memory storage to store precise SDF maps. Implicit neural representations (INR) were used to learn and store SDF maps in a compressed form. INR-based methods were compared, focusing on the effectiveness of MetaSparseINR in pruning networks to reduce storage requirements. The study shows better performance of the MetaSparseINR than random pruning and excels in few-shot learning contexts while maintaining higher fidelity in SDF representation. Extensive experiments verified the excessive storage demands of traditional SDFs, and an INR-based approach mitigated this storage issue. Finally, by leveraging MetaSparseINR, the study offers advancements in efficient scene text segmentation by reducing storage size and learning time without compromising quality.

목차

Abstract
1. Introduction
2. Related Works
3. Compared Methods in Experiments
4. Experiments
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0