메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Shrutika Sinha (Kookmin University) G. Pradeep Reddy (Kookmin University) Soo-Hyun Park (Kookmin University)
저널정보
대한산업공학회 대한산업공학회 춘계공동학술대회 논문집 2024년 대한산업공학회 춘계공동학술대회 논문집 [3개 학회 공동주최]
발행연도
2024.5
수록면
4,088 - 4,092 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The channel selection mechanism plays an important role as it optimizes performance, minimizes interference, and maximizes range in wireless communication applications. With the rapidly increasing usage of wireless communication in maritime, it is important to identify a suitable technology that provides lower cost, energy efficient, long-range and reliable communication link. For safety and navigation, the reliability of communication is vital at sea. However, traditional single-channel wireless networks remain susceptible to link failures, disrupting critical data transmission. Despite advancements, current approaches frequently fail to meet expectations. Manual switching can lead to human errors and struggles to adapt to dynamic conditions encountered in nautical environments. Keeping this in view, this paper proposes a deep learning-based channel selection mechanism between Wi-Fi and LoRa (Long Range). Further, deep learning-based techniques are used to learn the best channel based on data collected in maritime scenarios. This is useful in dynamic environments such as maritime, where the conditions change abruptly. To validate the proposed idea, classifiers such as LSTM and CNN considered for the research. The experimental results show that CNN has better performance with an accuracy of 97%.

목차

Abstract
Introduction
Methodology
Results and Analysis
Conclusion
References

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0