메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이대재
저널정보
한국수산과학회 한국수산과학회지 한국수산과학회지 제49권 제2호
발행연도
2016.4
수록면
224 - 233 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The objective of this study was to develop an artificial neural network (ANN) model for the acoustic identification of commercially important fish species in Korea. A broadband echo acquisition and processing system operating over the frequency range of 85-225 kHz was used to collect and process species-specific, time-frequency feature images from six fish species: black rockfish Sebastes schlegeli, black scraper Thamnaconus modesutus [K], chub mackerel Scomber japonicus, goldeye rockfish Sebastes thompsoni, konoshiro gizzard shad Konosirus punctatus and large yellow croaker Larimichthys crocea. An ANN classifier was developed to identify fish species acoustically on the basis of only 100 dimension time-frequency features extracted by the principal components analysis (PCA). The overall mean identification rate for the six fish species was 88.5%, with individual identification rates of 76.6% for black rockfish, 82.8% for black scraper, 93.8% for chub mackerel, 90.6% for goldeye rockfish, 96.9% for konoshiro gizzard shad and 90.6% for large yellow croaker, respectively. These results demonstrate that individual live fish in well-controlled environments can be identified accurately by the proposed ANN model.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090159634