메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정선우 (전남대학교) 유선용 (전남대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.51 No.6
발행연도
2024.6
수록면
503 - 512 (10page)
DOI
10.5626/JOK.2024.51.6.503

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
다약제는 암, 고혈압, 천식 등 다양한 질병에 대하여 유망한 접근법이다. 일반적으로 병원에 방문하는 환자는 2종 이상의 약물을 처방받는다. 그러나 다약제의 사용은 개별 약물이 목표하는 작용 외에 예상치 못한 상호작용을 유발할 수 있다. 약물 간 상호작용을 사전에 예측하는 것은 안전한 약물 사용을 위한 매우 중요한 과제이다. 본 연구에서는 다약제 사용 시 발생 가능한 약물 간 상호작용 예측을 위해 개별 약물 정보를 포함한 문서를 이용하여 약물을 표현하는 문서 임베딩 기반의 딥러닝 예측 모델을 제안한다. 약물 정보 문서는 DrugBank 데이터를 이용해 약물의 설명, 적응증, 약력학 정보, 작용 기전, 독성 속성을 결합해 구축한다. 그 후 Doc2Vec, BioSentVec 언어 모델을 통해 약물 문서로부터 약물 표현 벡터를 생성한다. 두 약물 표현 벡터는 한 쌍으로 묶여 딥러닝 기반 예측 모델에 입력되고, 해당 모델은 두 약물 간 상호작용을 예측한다. 본 논문에서는 언어 임베딩 모델의 성능 비교, 데이터의 불균형도 조절 등 다양한 조건의 변화에 따른 실험 결과의 차이를 분석하여 약물 간 상호작용 예측을 위한 최적의 모델을 구축하는 것을 목표로 한다. 제안된 모델은 약물 처방 과정, 신약 개발의 임상 과정 등에서 약물간 상호작용 사전 예측을 위하여 활용될 수 있을 것으로 기대된다.

목차

요약
Abstract
1. 서론
2. 데이터
3. 딥러닝 기반 DDI 예측 네트워크
4. 결과
5. 고찰
6. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0