메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jianbing Yin (State Grid Zhejiang Hangzhou Power Supply) Junhai Wang (State Grid Zhejiang Hangzhou Power Supply) Lin Chen (State Grid Zhejiang Hangzhou Power Supply) Mingchang Wang (State Grid Zhejiang Hangzhou Power Supply) Hao Luo (Zhejiang University) Yongheng Yang (Zhejiang University)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2023-ECCE Asia
발행연도
2023.5
수록면
2,436 - 2,442 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Traditional electricity grids use large-capacity synchronous generators as power generation devices, which have the characteristics of large volume and high robustness. In recent years, the rapid development of renewable energy in alignment with the national strategy of Carbon Neutrality in China by 2060 has brought new opportunities and challenges to traditional power grids. Power electronics converters are the key to renewable energy integration to gradually replace traditional synchronous generators, leading to reduced inertia and more challenges. While being more flexible, it makes the stability of the grid worse. In view of this, various advanced control strategies have been developed in the literature. The control of grid-connected converters has been broadly divided into two groups, grid-following (GFL) and grid-forming (GFM). In this paper, the characteristics of the GEM control are benchmarked through simulations, mainly the virtual synchronous generator (VSG) control and the virtual oscillator control (VOC). The benchmarking indicates that the VSG control strategies with virtual inertia have less fluctuation in response to various disturbances and the VOC performs better in terms of dynamics.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. GRID-CONNECTED CONTROL STRATEGIES
Ⅲ. GRID-FORMING CONTROL STRATEGIES
Ⅳ. SIMULATION BENCHMARKING OF GRID-FORMING CONTROL
Ⅴ. DISCUSSION
Ⅵ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0