메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
주진현 (Hoseo University) 박근덕 (Hoseo University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제29권 제7호(통권 제244호)
발행연도
2024.7
수록면
73 - 80 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 토픽 모델링과 장단기 기억(LSTM) 신경망을 결합하여 한국 종합주가지수(KOSPI) 예측의 정확도를 향상하는 방법을 제안한다. 본 논문에서는 LDA(Latent Dirichlet Allocation) 기법을 이용해 금융 뉴스 데이터에서 금리 인상 및 인하와 관련된 10개의 주요 주제를 추출하고, 추출된 주제를 과거 KOSPI 지수와 함께 LSTM 모델에 입력하여 KOSPI 지수를 예측하는 모델을 제안한다. 제안된 모델은 과거 KOSPI 지수를 LSTM 모델에 입력하여 시계열 예측 방법과 뉴스 데이터를 입력하여 토픽 모델링하는 방법을 결합하여 KOSPI 지수를 예측하는 특성을 가진다. 제안된 모델의 성능을 검증하기 위해, 본 논문에서는 LSTM의 입력 데이터의 종류에 따라 4개의 모델(LSTM_K 모델, LSTM_KNS 모델, LDA_K 모델, LDA_KNS 모델)을 설계하고 각 모델의 예측 성능을 제시하였다. 예측 성능을 비교한 결과, 금융 뉴스 주제 데이터와 과거 KOSPI 지수 데이터를 입력으로 하는 LSTM 모델(LDA_K 모델)이 가장 낮은 RMSE(Root Mean Square Error)를 기록하여 가장 좋은 예측 성능을 보였다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Experiments
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0