메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Md Nasim Reza (Chonnam National University) In Seop Na (Chonnam National University) Kyeong-Hwan Lee (Chonnam National University)
저널정보
한국콘텐츠학회(IJOC) International JOURNAL OF CONTENTS International JOURNAL OF CONTENTS Vol.13 No.3
발행연도
2017.9
수록면
1 - 8 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Rice plant numbers and density are key factors for yield and quality of rice grains. Precise and properly estimated rice plant numbers and density can assure high yield from rice fields. The main objective of this study was to automatically detect and count rice plants using images of usual field condition from an unmanned aerial vehicle (UAV). We proposed an automatic image processing method based on morphological operation and boundaries of the connected component to count rice plant numbers after transplanting. We converted RGB images to binary images and applied adaptive median filter to remove distortion and noises. Then we applied a morphological operation to the binary image and draw boundaries to the connected component to count rice plants using those images. The result reveals the algorithm can conduct a performance of 89% by the F-measure, corresponding to a Precision of 87% and a Recall of 91%. The best fit image gives a performance of 93% by the F-measure, corresponding to a Precision of 91% and a Recall of 96%. Comparison between the numbers of rice plants detected and counted by the naked eye and the numbers of rice plants found by the proposed method provided viable and acceptable results. The R2 value was approximately 0.893.

목차

ABSTRACT
1. INTRODUCTION
2. MATERIALS AND METHODS
3. EXPERIMENTAL RESULTS
4. CONCLUSION
REFERENCES

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090377418