메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jung-Lok Yu (Korea Institute of Science and Technology Information) Du-Seok Jin (Korea Institute of Science and Technology Information) Il-Yeon Yeo (Korea Institute of Science and Technology Information) Hee-Jun Yoon (Korea Institute of Science and Technology Information)
저널정보
한국콘텐츠학회(IJOC) International JOURNAL OF CONTENTS International JOURNAL OF CONTENTS Vol.16 No.4
발행연도
2020.12
수록면
16 - 25 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The size of observation data in astronomy has been increasing exponentially with the advents of wide-field optical telescopes. This means the needs of changes to the way used for large-scale astronomy data analysis. The complexity of analysis tools and the lack of extensibility of computing environments, however, lead to the difficulty and inefficiency of dealing with the huge observation data. To address this problem, this paper proposes a workflow execution system for analyzing large-scale astronomy data efficiently. The proposed system is composed of two parts: 1) a workflow execution manager and its RESTful endpoints that can automate and control data analysis tasks based on workflow templates and 2) an elastic resource manager as an underlying mechanism that can dynamically add/remove virtualized computing resources (i.e., virtual machines) according to the analysis requests. To realize our workflow execution system, we implement it on a testbed using OpenStack IaaS (Infrastructure as a Service) toolkit and HTCondor workload manager. We also exhaustively perform a broad range of experiments with different resource allocation patterns, system loads, etc. to show the effectiveness of the proposed system. The results show that the resource allocation mechanism works properly according to the number of queued and running tasks, resulting in improving resource utilization, and the workflow execution manager can handle more than 1,000 concurrent requests within a second with reasonable average response times. We finally describe a case study of data reduction system as an example application of our workflow execution system.

목차

Abstract
1. Introduction
2. Background and Related Works
3. Proposed Workflow Execution System
4. Experimental Results
5. Conclusions
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090389329