메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
양수진 (연세대학교) 최영진 (왕궁헬스센터) 김재연 (연세대학교 치과대학) 정의원 (연세대학교) 박원서 (연세대학교)
저널정보
대한구강악안면임프란트학회 대한구강악안면임플란트학회지 대한구강악안면임플란트학회지 제28권 제1호
발행연도
2024.3
수록면
18 - 31 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: In this study, we aimed to classify an implant system by comparing the types of implant thread shapes shown on radiographs using various Convolutional Neural Networks (CNNs), particularly Xception, InceptionV3, ResNet50V2, and ResNet101V2. The accuracy of the CNN based on the implant site was compared. Materials and Methods: A total of 1000 radiographic images, consisting of eight types of implants, were preprocessed by resizing and CLAHE filtering, and then augmented. CNNs were trained and validated for implant thread shape prediction. Grad-CAM was used to visualize class activation maps (CAM) on the implant threads shown within the radiographic image. Results: Averaged over 10 validation folds, each model achieved an AUC of over 0.96: AUC of 0.961 (95% CI 0.952–0.970) with Xception, 0.973 (95% CI 0.966-0.980) with InceptionV3, 0.980 (95% CI 0.974-0.988) with ResNet50V2, and 0.983 (95% CI 0.975-0.992) with ResNet101V2. Accuracy was higher in the posterior region than in the anterior area in all four models. Most CAMs highlighted the implant surface where the threads were present; however, some showed responses in other areas. Conclusion: The CNN models accurately classified implants in all areas of the oral cavity according to the thread shape, using radiographic images.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0