메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박수희 (대구가톨릭대학교) 한지영 (대구가톨릭대학교) 박제완 (대구가톨릭대학교) 김용민 (대구가톨릭대학교)
저널정보
한국방사선산업학회 방사선산업학회지 방사선산업학회지 제18권 제1호
발행연도
2024.3
수록면
15 - 21 (7page)
DOI
10.23042/radin.2024.18.1.15

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The Non-Proliferation Treaty (NPT) is the basis of global efforts to prevent the spread of nuclearweapons. In Republic of Korea, safety measures are integrated with NPT approval through agreements with the InternationalAtomic Energy Agency (IAEA) and the Safeguards Agreement. In contrast, Democratic People’s Republicof Korea (DPRK), initially an NPT member, withdrew, refusing IAEA nuclear inspections. This inhibits the precisemanagement of DPRK’s nuclear facilities and limits access to related information. The Korean Peninsula, politicallydivided, sees DPRK in control of nuclear weapons. Although the IAEA periodically evaluates DPRK’s nuclear facilities,there’s a research gap in contamination and site management with nuclear activities. Recognizing the presence orabsence of such activities is crucial for peaceful nuclear endeavors. This proposal suggests the number and locationsfor environmental sample collection using the Visual Sample Plan (VSP) software for nuclear activity analysis. VSPsoftware is sample collection locations and quantities through statistical tests on collected data, ensuring reliabilityfor decision-making. The proposal identifies sites and facilities for nuclear activity analysis based on IAEA safetyreports, utilizing the software’s embedded methods. Suggested sampling locations for undisclosed nuclear activitiesemploy VSP’s embedded techniques, including ‘Show that at least some high % of the sampling area is acceptable’ toconfirm contamination and ‘Estimate the Mean’ to evaluate the average contamination level.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0