메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Haiying Qi (Jilin Province Economic Management Cadre College)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.13 No.4
발행연도
2024.8
수록면
361 - 371 (11page)
DOI
10.5573/IEIESPC.2024.13.4.361

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The online evaluation data of an image of tourist attractions is conducive to tourists’ objective and fair perception of the destination. This study built a tourist perception model based on online evaluation data of an image of Xi’an tourist attractions. The model first uses the TF-IDF algorithm to analyze the cognitive image of tourists. It then uses the NB method to analyze the emotional image of tourists, and finally, it uses an LDA theme model to analyze the overall image of the scenic spot to explore the tourist perception. The range of TF-IDF values is 0.0245-0.2316, and the maximum value and minimum value correspond to the service attitude and category, respectively. The NB model has a long running time under different data scales, and the corresponding maximum values are 8.1 s and 7.9 s. With the same data size, NN has the shortest running time, followed by SVM and KNN. When the number of topics is 4, the confusion degree of positive emotional text and negative emotional text are the lowest, and the best number of topics is 4. The method can obtain the satisfaction and dissatisfaction of tourists in a scenic spot in online evaluation data, thus avoiding an unpleasant feeling in the process of tourism. The scenic spot’s management efficiency can also be improved according to the situation.

목차

Abstract
1. Introduction
2. Related Work
3. Tourist Perception of an Image of Xi’an Tourist Attractions Applying Big DataTechnology
4. The Tourist Perception Results of an Image of Xi’an Tourist Attractions under the Big Data Technology
5. Conclusion
References

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090252729